The University of British Columbia
UBC - A Place of Mind
The University of British Columbia
Clean Energy Research Centre
  • Home
  • About
  • Research
    • Bioenergy systems & biorefinery
    • Electro-and-Photo-Chemical Energy System
    • Urban energy systems: Transportation / buildings
    • Carbon Capture and Decarbonization of Energy Systems
    • Data Analytics & Optimization
    • Policy Analyses of Clean Energy Systems
  • Innovation
    • Industry Partner
    • Government & Community Engagement
    • Campus as a Living Lab
    • Urban Freight System Emissions
  • Education
  • People
  • News & Events
  • Safety + Resources
» Home » Researchers » Bushe, Kendal

Bushe, Kendal

people

Kendal Bushe

Associate Professor
wkb@mech.ubc.ca
Home department: Mechanical Engineering
Website: Combustion Simulation Laboratory


Research Interests

  • Combustion
  • Turbulence
  • Numerical Simulation
  • Computational Fluid Dynamics
  • IC Engines
  • Thermal Power Generation

Current Research Work

  • Reynolds Averaged Navier-Stokes: Here, the governing equations in their ensemble-averaged form are solved to obtain either steady or transient flow fields using both commercial CFD packages and in-house, flow-specific codes. Models must be provided for the dissipation of energy due to turbulence. In the case of reacting flows, models must also be provided for the averaged chemical source-terms. Applications range from fundamental studies to industrial applications for use in design optimization.
  • Large Eddy Simulation: In LES, the governing equations are spatially filtered such that only the large scale motions in the flow are resolved on the computational grid. Models must be provided for the dissipation of energy at unresolved scales. In the case of reacting flows, models must be provided for the chemical source-terms as well because they are also under-resolved in simulations of most practical flames. Here we have been focusing on careful validation of models against DNS and experimental data for simple laboratory-scale flames.
  • Fundamental ignition simulations: We are also studying autoignition using the relatively new Stochastic Particle Model, which solves the chemical Master equation using a Monte Carlo technique. Using this method, the autoignition delay time becomes a random variable. This study has significant implications for the operation and control of Homogeneous-Charge Compression Ignition (HCCI) engines.

Work With Us

We actively seek local, national, and global collaboration with industry, academia, and all levels of government

Contact us
UBC Clean Energy Research Centre
2360 East Mall
Vancouver, BC Canada V6T 1Z3
Tel 604 827 4342
Email cerc@cerc.ubc.ca
Find us on
     
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • Copyright |
  • Accessibility