

Kendal Bushe
Associate Professor
wkb@mech.ubc.ca
Home department: Mechanical Engineering
Website: Combustion Simulation Laboratory
Research Interests
- Combustion
- Turbulence
- Numerical Simulation
- Computational Fluid Dynamics
- IC Engines
- Thermal Power Generation
Current Research Work
- Reynolds Averaged Navier-Stokes: Here, the governing equations in their ensemble-averaged form are solved to obtain either steady or transient flow fields using both commercial CFD packages and in-house, flow-specific codes. Models must be provided for the dissipation of energy due to turbulence. In the case of reacting flows, models must also be provided for the averaged chemical source-terms. Applications range from fundamental studies to industrial applications for use in design optimization.
- Large Eddy Simulation: In LES, the governing equations are spatially filtered such that only the large scale motions in the flow are resolved on the computational grid. Models must be provided for the dissipation of energy at unresolved scales. In the case of reacting flows, models must be provided for the chemical source-terms as well because they are also under-resolved in simulations of most practical flames. Here we have been focusing on careful validation of models against DNS and experimental data for simple laboratory-scale flames.
- Fundamental ignition simulations: We are also studying autoignition using the relatively new Stochastic Particle Model, which solves the chemical Master equation using a Monte Carlo technique. Using this method, the autoignition delay time becomes a random variable. This study has significant implications for the operation and control of Homogeneous-Charge Compression Ignition (HCCI) engines.